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This paper focuses on the identification of a road profile disturbance acting on vehicles.
Vehicles are subjected to many kinds of excitation sources such as road profile irregulari-
ties, which constitute a major area of interest when designing suspension systems. Indeed,
determining the road profile is important for passive suspension design on the one hand
and for determining an appropriate control law for active suspensions on the other. Direct
measurement techniques of the road profile are expensive, so solutions based on estimation
theory are needed. The aim of this paper is to characterize the road excitation using the
Independent Component Analysis (ICA). This proposed method can reconstruct original
excitation sources by using physically measurable signals of the system under study. He-
re, the estimation of road disturbances is considered as output sources and identified from
dynamic responses of the vehicle. These responses can be measured via sensors or can be
numerically computed. In our case, they are numerically simulated using the Newmark me-
thod and consider different types of road profiles. The obtained results are validated after
using a comparison with the Kalman filtering. The robustness of the ICA is confirmed via
parametric study.
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1. Introduction

In order to link the vehicle chassis and its wheels to the ground, a suspension composed of
springs and dampers is used (Basha and Rao, 2012; Agharkakli et al., 2012). This mechanism
aims mainly at isolating the vehicle from road disturbances and providing passenger comfort (Li
et al., 2014; Purushotham, 2013). In the past decades, many researchers focused on improving
road handling and safety. Some of them proposed to use active control for these purposes. A
method based on active damping control was firstly developed by Karnopp (1983) and Karnopp
and Heess (1991). Others provided alternative algorithms (Gopala Rao and Narayanan, 2008;
Saveresi and Spelta, 2009). In this context, Fang et al., 2011) used a double loop control in
order to study a dynamic model of a semi-active suspension. This model showed effective results
to isolate external vibrations. Recently, Unger et al. (2013) used a new modified road model
to develop semi-active suspension control. He showed that this model could successfully be
implemented in a real vehicle in order to compensate the road disturbance.

Other works dealt with the study of the influence of the road excitation on the suspension
performance. For example, Hunt (1991) examined the dynamic response of vehicles subjected
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to a random excitation due to the road profile. Also Bayrakdar (2010) studied the dynamic
response of the vehicle subjected to a harmonic excitation using single and multi-degree of
freedom systems. Therefore, the knowledge of the road profile is very important since it has a
big impact on both the passengers comfort and ride quality (Yan, 2012). This topic has been
studied by many researchers for many decades. Some of them recommended measuring road
roughness by visual inspections (Kim et al., 2002). Others proposed the estimation theory to
identify the road profile such as Harris et al., 2010) who used the Monte Carlo estimation and
Solhmirzaei et al. (2012) who proposed the use of a multi-input multi-output feed forward wavelet
neural network. However, these methods have some restrictions. One of the most used techniques
nowadays is the Kalman filtering. This method was modified by Fauriat et al. (2016) who used
the “Augmented Kalman filter” and showed that this technique gave a good estimation result.
But it still has some limitations.

In this paper, extraction of external excitations to which the quarter car model is subjected is
done by applying the Independent Component Analysis (ICA). The ICA is based on recovering
unknown source signals from the observed signals. Several works used this technique to diagnose
mechanical systems in the context of conditional monitoring (Sika, 2008; Gelle et al., 2003). ICA
aims to decompose measured signals into a linear combination of independent signals in order to
have the measured signals as independent as possible. Akrout et al. (2012) used this technique
for the estimation of excitation forces applied to a continuous system and proved its efficiency in
reconstructing original signals. The aim of this paper is to investigate the efficiency of applying
the ICA technique in identification of external excitations applied to vehicles (Zarzoso and
Comon, 2010; Nakamura et al., 2012; Ben Hassen et al., 2017a,c,d). The results of estimation were
validated through comparing the obtained results with those of the Kalman filtering developed
by Fauriat et al. (2016).

This paper is organized as follows: firstly, description of the studied model and road profile
disturbance is done. Then, techniques of estimation are presented: the proposed ICA and valida-
tion technique: Kalman filtering. Finally, the reconstructed excitations by the ICA are compared
to the original ones and to those obtained by the Kalman filtering. The efficiency of the ICA
method is also discussed by studying the influence of the sprung mass variation and the vehicle
speed in the estimation process.

2. Vehicle model and road disturbance

To study the dynamic behavior of the vehicle, different models of vehicles and road profiles are
used.

There are mainly three types of vehicle models: the full car model which comprises vertical
displacement of the wheels and body rotations about longitudinal and lateral axis, the half-
-vehicle model which takes into account pitch or roll motion and finally, the quarter-vehicle
model, the simplest one, describing only vertical motions but containing the basic characteristics
of the full model.

The road distribution can be modeled as continuous vibrations or singular perturbations.
Singular perturbations are defined as a high shock amplitude that occurs on a smooth road while
continuous vibrations are modeled as random excitations due to a rough road.

In this paper, a quarter car model subjected to a random excitation is studied.

2.1. Studied vehicle model: quarter car model

A quarter car model with two degrees of freedom is studied in this paper (Fig. 1). X1 is the
displacement of the sprung mass m1 whileX2 is the displacement of the unsprung mass m2.
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Fig. 1. Quarter car model

The equations of motion for the system at hand may be written as follows

m1Ẍ1 + k1(X1 −X2) + c1(Ẋ1 − Ẋ2) = 0

m2Ẍ2 + k1(X2 −X1) + c1(Ẋ2 − Ẋ1) + k2(X2 − r(t)) = 0
(2.1)

In the matrix form, these equations can be written as

MẌ+CẊ+KX = F (2.2)

where X, Ẋ and Ẍ are respectively the displacement, velocity and acceleration vectors. M, C
and K are respectively the mass, damping and stiffness matrices of the studied system. F is the
excitation force due to the road disturbance r(t).
The matrices that appear in equation (2.2) are given by

M =

[
M1 0
0 M2

]
C =

[
c1 −c1
−c1 c1

]

K =

[
k1 −k1
−k1 k1 + k2

]
F =

[
0
k2r(t)

] (2.3)

The parameters considered for the suspension system are taken according to the model of Fauriat
et al. (2016). They are presented in Table 1.

Table 1. Parameters of the suspension system (Fauriat et al., 2016)

Parameter Value Unit

Sprung mass m1 = 372 kg

Unsprung mass m2 = 59 kg

Suspension stiffness k1 = 36540 N/m

Tire stiffness k2 = 242000 N/m

Suspension damping c1 = 3300 Ns/m

2.2. Road disturbance: random road profile

Concerning the external excitation due to the road disturbance, a random road profile is
considered in this study. This profile is constructed according to ISO 8608 (1995) (Table 2)
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Table 2. Road profile classification

Road Degree of roughness Gd(n0) [10
−6m3]

class Lower limit Geometric mean Upper limit

Road A – 16 32

Road B 32 64 128

Road C 128 256 512

Road D 512 1024 2048

Road E 2048 4096 8192

which classifies profiles to different categories based on the power spectral density (PSD) (Yan,
2012).
The general form of the PSD is

Gd = Gd(n0)
( n
n0

)
−w

(2.4)

where n0 (n0 = 0.1 cycle/m) is the reference spatial frequency, n is the spatial frequency, w is
the exponent of the PSD and Gd(n0) is the displacement PSD. The classification of different
profiles is defined by Table 2.
The construction of the road roughness is done by the method of the Integral White Noise

Model (Yan, 2012) which assumes that the road roughness is a result of the filtered white noise.
It is defined by the following equation

q̇(t) = 2πn0w1(t)
√
Gd(n0)v (2.5)

where w1(t) is the Gaussian white noise with a variance equal to 1, q(t) is the road roughness
and v is the vehicle velocity.

3. Estimation techniques

As mentioned previously, the road profile affects both the vehicle dynamics and the passengers
comfort. Therefore, a precise knowledge of the imperfection of the road is essential. Thus, se-
veral researches have been estimating the road profile. Some of the results are based on direct
measurements (Kim et al., 2002) of the road profiles, whereas others on numerical methods
(Solhmirzaei et al., 2012).
In this paper, two techniques of estimation are studied: the Independent Component Analysis

(Ben Hassen et al., 2017d; Taktak et al., 2012; Abbes et al., 2011), which is the proposed method
to estimate the road profile and the Kalman filter (Fauriat et al., 2016), which is used to validate
the ICA.

3.1. The proposed algorithm: Independent Component Analysis

The vector O of the observed signals is written as (Welch and Bishop, 2006; Kalman, 1960)

O =MICAS (3.1)

where O is the vector of the observed signals (in this paper, the vector of the observed signals
represents the sprung mass acceleration), MICA – the mixing matrix, S – the vector of source
signals (in this paper, the vector of the source signals represents the estimated road profile).
The task consists of estimating both MICA and S by knowing only the vector O. This

estimation must be done under some assumptions given in (Hyvärinen and Oja, 2000) as follows:
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• The components of the vector S are statistically independent.

• The number of the observed signals is equal to the number of the estimated sources.

• The components of the vector S must have a non-Gaussian distribution.

Taking into account these general assumptions, the ICA can define each column of the ma-
trix MICA and then compute the separating matrixW as the inverse of the matrix MICA.
Then the ICA estimates the corresponding source signal defined by

S =WO (3.2)

Note thatW must satisfy the criterion of a non-Gaussian distribution, so it must maximize the
kurtosis (Ben Hassen et al., 2017d).
In order to have a successful extraction of the estimated sources and the mixing matrix,

the observed signal O undergoes some pre-treatments (Hyvärinen and Oja, 2000). In fact, these
measured signals must be centered and whitened in order to simplify the ICA algorithm.
After validating all the pre-treatments, the recovered signal can be separated. So we are able

to determine each column of the separating matrix by the ICA, and then the source related to
this column is extracted. It is defined by

Y =WTO (3.3)

Finally, after determination of the first column of the matrix W, the ICA uses the deflation
approach to extract the estimated sources. So, each source will be chosen once with a multiplying
factor.
Figure 2 summarizes the concept of the ICA algorithm (Abbes et al., 2011; Taktak et al.,

2012).

Fig. 2. ICA concept

In this study, the vector of the observed signal X is constructed only by the sprung mass
acceleration, Eq. (2.1), so

O(t) = Ẍ1

3.2. Augmented Kalman filtering

The Kalman filter is a predictor-corrector type estimator (Kalman, 1960; Welch and Bishop,
2006). It incorporates all information that can be provided to it in order to estimate the current
value of the variables of interest (Fauriat et al., 2016). This technique is used as real-time
estimation in the context of suspension control.
In this study, application of the augmented Kalman filter to the quarter-vehicle model is used

in order to estimate the road profile. Compared with the regular Kalman filter, the augmented
Kalman filter takes into account the excitation of the road profile (Fauriat et al., 2016) as
mentioned in Eq. (3.5). This leads to the best control of the quality of the obtained estimation
results (Fauriat et al., 2016).
The quarter car model is considered linear, continuous and invariant in time, so it can be

described by a representation of the following state space

ẋ(t) = Ax(t) +Bu(t) bfy(ti) = Cx(ti) +Du(ti) (3.4)
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where

A =




−

c1

M1

c1

M1
−

k1

M1

k1

M1
c1

M2
−

c1

M2

k1

M2
−

k1 + k2
M2

0 0 1 0
0 0 0 1




B =




0
k2

M2
0
0




C =




0 0 1 −1
0 0 1 0

−

c1

M1

c1

M1
−

k1

M1

k1

M1
c1

M2
−

c1

M2

k1

M2
−

k1 + k2
M2




D =




0
0
0
k2

M2




and x(t) = [Ẍ1, Ẍ2, Ẋ1, Ẋ2]
T is the state vector while the output vector which constitutes the

observed signal for the Kalman filter is defined by: Y = [X1 −X2,X1, Ẍ1, Ẍ2].

At the first step, discretization of the state system, Eqs. (3.4), is done, so the discrete state
matrices are obtained as: Ad = e

Adt and Bd = (e
Adt
− I)A−1B. Then by using the augmented

state vector xak = [xk, uk]
T and the augmented matrix Aa and Ca, the discrete time augmented

Kalman filter is obtained as

xak+1 =

[
xk+1
uk+1

]
=

[
Ad Bd
0 I

] [
xk
uk

]
+

[
wk
ηk

]
= Aax

a
k + ςk

yk = [C,D]

[
xk
uk

]
+ vk = Cax

a
k + vk

(3.5)

where ςk = [wk, ηk]
T contains the state and excitation perturbations, respectively, while vk is

the measurement perturbation.

The augmented Kalman filter is applied to obtain the equations for two steps:

— the prediction step

x̃ak+1/k = Aax̃
a
k/k Pk+1/k = AaPk/kA

T
a +Qa (3.6)

— the correction step

Mk+1 = Pk+1/kC
T
a (CaPk+1/kC

T
a +R)

−1

x̃ak+1/k+1 = x̃
a
k+1/k +Mk+1(yk+1 −Cax̃

a
k+1/k)

Pk+1/k+1 = Pk+1/k −Mk+1CaPk+1/k

(3.7)

where Pk+1 is the prediction matrix andMk+1 is the correction matrix.

The tuning parameters of the Kalman filtering theory are constructed by the covariance
matrices Q and R (Fauriat et al., 2016). They are chosen via empirical assessment derived from
the tuning operation (Fauriat et al., 2016). They are constant in this study

Q =




10−4 0 0 0 0
0 10−2 0 0 0
0 0 10−8 0 0
0 0 0 10−7 0
0 0 0 0 10−7




R =




10−6 0 0 0
0 10−6 0 0
0 0 1 0
0 0 0 100
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4. Numerical results and discussions

This Section describes the results of simulation for the quarter-car suspension system with the
ICA. The obtained results are compared with those of the augmented Kalman filter to observe
their performance. This comparison is done with the computation of the RMS of the error
between the true profile and the estimated one

RMS =

√√√√√ 1
T2
− T1

T2∫

T1

(y1 − y2)2 dt (4.1)

where y1 represents the real road profile r(t), Eq. (2.1), and y2 the estimated profile S(t),
Eq. (3.2).

Then, a brief parametric study is done to investigate the capabilities and limitations of the
two studied methods.

4.1. Random profile: road type A

Starting from the acceleration of the sprung mass, the ICA method is used in order to
extract the estimated road profile. In the Kalman theory, the observed signal is constructed
by the suspension deflection, sprung mass displacement and the acceleration of the sprung and
unsprung mass. A random profile of type A is being estimated by the two methods for a vehicle
speed equal to 54 km/h. The obtained results are shown in Figs. 3 and 4.

Fig. 3. Road type A: comparison between the true and the estimated profiles (left). Zoomed-in
comparison (right)

The results displayed in Figs. 3 and 4 show that both the ICA and the Kalman filtering
theory can estimate the true road profile. However, it is noticed that in the time-domain the
ICA gives a more precise result than the Kalman theory, which presents a small lag as mentioned
by the RMS of the relative error between the true profile and the estimated one presented in
Table 3.

Table 3. RMS of the relative error between the true profile (road type A) and the estimated
one

RMS [m]

ICA algorithm 0.0094

Kalman algorithm 0.14
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Fig. 4. Road type A: comparison between the estimate and the true profiles in terms of PSDs

In the PSD spectrum, it is clear that there is a loss of content on the high frequency band
when the Kalman method is used. According to Fauriat et al. (2016), this phenomenon can not
be avoided. Nevertheless, there is a good agreement between the real profile and the estimated
with the ICA. A short discrepancy in the low-band frequency is obtained but it does not affect
the vehicle response (Fauriat et al., 2016).

4.2. Composed random profile

In this part, the road disturbance is constructed with a series of random profiles which are:
road A-road C-road E. The use of this type of profile is done to check if the two studied methods
are able to estimate a combined road profile.

The obtained results are presented by the following Figs. 5 and 6.

Fig. 5. Composed random profile: comparison between the true and the estimated profiles (left).
Zoomed-in comparison (right)

When observing Figs. 5 and 6, it can be said that both used methods can estimate the road
profile even if it is constructed by a combination of different profile types. As in the previous
case, the results obtained by the ICA remain more accurate both in the time and frequency
domain, and this is proved by Table 4.
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Fig. 6. Composed random profile: comparison between the estimate and the true profiles in terms
of PSDs

Table 4. RMS of the relative error between the true profile: composed random profile and the
estimated one

RMS [m]

ICA algorithm 0.001

Kalman algorithm 0.18

Fig. 7. Effect of variation of sprung mass on the estimation process: (a) ICA algorithm,
(b) Kalman filtering
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4.3. Parametric study

4.3.1. Sprung mass variation

Since any vehicle whose major activity is transport of people or items, we propose in this
part to study the efficiency of the ICA algorithm and the Kalman filtering method via variation
of the sprung mass. Hence, we assume that an additional payload is applied to the sprung mass
by a range of 20% and 60% as shown in Fig. 7. The presented results are computed for a constant
vehicle speed equal to 54 km/h.

In this figure, it is observed that the ICA produced identical estimation of the road profile
with increasing mass. However, the Kalman filtering is a little sensitive to the sprung mass
variation.

4.3.2. Vehicle speed variation

In this part, we are going to test the vehicle speed variation on the estimation techniques.
A speed of 30 km/h and 110 km/h is applied. The results of the estimation are shown in the
following Figs. 8 and 9.

Fig. 8. Effect of variation of the vehicle speed on the estimation by the ICA. Estimated road profiles
and the real road profile (left). PSD of different estimates and the real road profile (right)

Fig. 9. Effect of variation of the vehicle speed on the estimation by the Kalman filtering. Estimated road
profiles and the real road profile (left). PSD of different estimations and the real road profile (right)

When comparing Figs 8 and 9, it can be noticed that the ICA is robust to the variation of
the vehicle speed, but in the Kalman filtering there is a loss of estimation which is especially
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noticeable in the frequency spectrum. This will affect the vehicle responses when driving at
different speeds (Fauriat et al., 2016).

5. Conclusions

Based on the obtained results, it appears that the ICA is an appropriate technique that enables
one to gather all the road profile information even in the presence of payload or speed variations.
This proposed method provides a good estimation both in time and frequency domain. The
validity of this method has been demonstrated through comparison with the augmented Kalman
filtering technique which has some limitations.

The strength of the ICA technique is that, apart from the fact that it is applicable with no
need to specific road instruments, it is also inexpensive. Moreover, unlike the Kalman filtering
which needs more than three vehicle responses, this method just needs one accelerometer to
gather the sprung mass acceleration, and so it can resolve the inverse problem. The ICA has
a great potential to identify the road disturbance. Therefore, it can be used over thousands of
kilometers as a real time estimation which is inexpensive and fast enough.

In the future work, the proposed method ICA will be coupled with active control to detect
in real time road deformation and, then, intuitively adapt the active suspension even before the
car reaches the excitation so that the passenger comfort could be achieved.
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